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1. ABSTRACT 
Motivation: Affymetrix GeneChip microarrays are widely used to measure mRNA 
concentration, but their probe annotation and probe-set construction remain a source of 
inaccuracy that greatly impacts downstream analysis.  We sought to improve gene expression 
measurement accuracy in large datasets through analysis of coordinated probe-level 
measurements followed by probe re-annotation and filtering. 
Results: Probe remapping and probe-set reconstruction using up-to-date gene annotation has 
been shown to improve Affymetrix GeneChip microarray accuracy.  For commonly used arrays, 
this re-annotation process affects most probe sets and leads to the loss of many individual probe 
measurements.  We show that probe-set remapping can be significantly improved by analyzing 
statistical dependencies at the probe level and across large and context-specific datasets, leading 
to more accurate probe annotation and probe-set construction.  In the absence of such analysis, 
practitioners are reduced to the more ad-hoc probe-set filtering, which leads to loss of 
informative probe reads and inclusion of data from poor-quality probes.  Large-scale expression 
profile datasets, with forty or more samples profiled on the same platform are now commonplace 
and allow for more robust probe annotation and filtering.  We describe CleanProbeSets, a novel 
probe-set construction method that leads to significant improvement in gene expression 
measurement accuracy, leading to higher concordance between analyses both on the same 
platform and across platforms.  With a low and an easy-to-estimate false-positive rate, 
CleanProbeSets avoids inclusion of flawed probes, accounts for dependence between probes, and 
addresses measurement variability due to transcript isoforms.  CleanProbeSets will be valuable 
for the analysis of future and existing datasets. 
Availability:   An implementation of CleanProbeSets is available by request from the authors. 
Contact:  califano@c2b2.columbia.edu 
 

1. Introduction 
 
Microarray-based genome-wide expression profiling is a powerful and a widely-used tool for 
studying cell phenotype at the molecular level.  Since their inception, however, microarray gene-
expression profiling accuracy has been suspect due to poor reproducibility across experiments 
and across platforms (Tan, Downey et al. 2003; Lossos, Czerwinski et al. 2004; Mecham, Klus et 
al. 2004).  Numerous studies have attempted to improve microarray accuracy by improving 
analytical and interpretive data processing, and normalization and filtering methods (Page and 
Coulibaly 2008).  Challenges addressed by these methods include individual probe-read quality 



(Eisen 1999; Hubbell, Liu et al. 2002 ; Zhang, Miles et al. 2003), the interpretation of probe 
reads across probe sets (Eisen, Spellman et al. 1998; Irizarry, Bolstad et al. 2003; Gentleman, 
Carey et al. 2004), and the aggregation of probes into probe sets (Gentleman, Carey et al. 2004; 
Liu, Zeeberg et al. 2007).  Here, we focus on remapping and filtering individual probes in 
Affymetrix GeneChip microarrays, the most popular genome-wide expression profiling platform.  
Whether as standalone or within plate sets, Affymetrix GeneChip microarrays are increasingly 
used for high-volume expression profiling studies (Basso, Margolin et al. 2005; Lamb, Crawford 
et al. 2006; Cancer Genome Atlas Research Network 2008). 
 
Gautier et al. and Carter et al. were among the first to realize that incorrect Affymetrix probe 
annotations were major contributors to inconsistencies between repeated experiments across 
platforms (Gautier, Moller et al. 2004; Carter, Eklund et al. 2005).  By redefining probe sets 
according to probe matches against cDNA libraries they were able to substantially improve 
cross-platform consistency.  Later studies repeatedly showed that re-aggregating and pruning 
probes based on probe-sequence alignment to up-to-date genome annotation significantly 
improved expression-profiling accuracy as measured in terms of cross-platform consistency 
(Gautier, Moller et al. 2004; Dai, Wang et al. 2005; Harbig, Sprinkle et al. 2005).  Challenges 
faced by annotation methods include addressing probes that do not match any transcripts and 
those that match multiple genes.  The most common approach is to discard these problematic 
probes, and annotate probes that match multiple transcripts of the same gene (Dai, Wang et al. 
2005; Liu, Zeeberg et al. 2007).  We followed this approach, which, as others have observed, 
may lead to a loss of up to 71% of the probes in Affymetrix GeneChip microarrays (De Leeuw, 
Rauwerda et al. 2008). 
 
Probe remapping using up-to-date genomic annotation has been repeatedly shown to improve 
microarray accuracy, but many challenges in probe-set redesign remain unresolved.  Specifically, 
tissue-specificity of transcript isoforms, post-transcriptional modifications, and allelic variability 
and mutations, can affect probe accuracy in a context-specific fashion.  Because of their complex 
and poorly understood nature, accounting for these features at the microarray design stage is a 
prohibitive task.  Interestingly, we show that when relatively large gene-expression-profile 
datasets are available, these issues can be naturally corrected using a relatively simple statistical 
procedure that identifies highly correlated probe clusters within groups of probes that match the 
same mRNA targets.  By defining probe sets based on information content and probe 
homogeneity across experiments, we minimized the effect of poorly performing probes in a cell-
context specific way and excluded uninformative probes.  The latter include probes with poor 
variability across samples as well as probes that contain special features that lead to cross- or 
non-specific hybridization. 
 
By harvesting the power of high-volume microarray expression experiments, where forty or 
more microarray experiments are carried out using the same platform, we showed that probe-set 
re-annotation and pruning can dramatically improve accuracy, leading to considerable 
improvements to downstream expression-based analysis.  We compared microarray expression 
consistency when using Affymetrix annotation, AffyProbeMiner annotation (Liu, Zeeberg et al. 
2007), and our CleanProbeSets annotation.  AffyProbeMiner is a recent effort focused on 
remapping and re-aggregating probes in Affymetrix GeneChips microarrays.  We measured inter- 
and intra-microarray consistency by computing the correlation between repeated gene profiling 



experiments using U133A (Su, Wiltshire et al. 2004), and by comparing gene sets identified as 
differentially down-regulated in centroblasts relative to naïve B cells using U95A and U133plus2 
platforms.  We show that annotation by CleanProbeSets dramatically improved the consistency 
across experiments and platforms, suggesting that re-annotated probe sets will profoundly 
improve the accuracy of downstream analysis. 
 

2. Methods 
 
2.1 Expression profiles 

Gene expression data include 102 B-cell samples profiled on U95A (Basso, Margolin et al. 
2005), 152 B-cell samples profiled on U95Av2 (Basso, Margolin et al. 2005), 200 B-cell samples 
profiled on U133plus2 (unpublished), and 60 samples from 30 human tissues profiled on U133A 
chips (Su, Wiltshire et al. 2004).  B-cell samples were obtained from Gene Expression Omnibus 
database (Edgar, Domrachev et al. 2002) accession GSE2350.  U133A gene expression profiles 
were obtained from GeneAtlasV2 (Su, Wiltshire et al. 2004), and included analysis of RNA 
samples from 30 tissues obtained from Clontech and hybridized in duplicates.  A Bioconductor-
based (Gentleman, Carey et al. 2004) implementation of MAS5 (Irizarry, Bolstad et al. 2003) 
was used to quantitatively estimate and normalize the intensity levels of probe sets. 
 

2.2 Probe mapping to RefSeq genes 
Probe sequences were mapped to the RefSeq sequence database (Pruitt and Maglott 2001) dating 
December 11th  2008 using ZOOM (Lin, Zhang et al. 2008) and allowing for at most one 
mismatch per probe (each probe sequence matched at least 24 transcript positions).  We matched 
against the positive orientation of RefSeq transcripts only.  Probes that matched multiple genes 
were discarded, and each location in each matching transcript was annotated. 
 

2.3 Generation of clean probe-sets 
Based on probe mapping to RefSeq transcripts and corresponding genes, we constructed gene-
focused probe sets after quality control for individual probes, clustering correlated probes, and 
testing probe-set reliability.  Probe sets were used to create CDF files for assigning quantitative 
probe-set intensity by MAS5. 
 
Probe reliability.  We first established the reliability of each individual probe based on its 
correlation to other probes mapped to the same gene (neighbors) across microarray experiments.  
The readout obtained from any given probe is informative only if it is significantly correlated 
with other probes mapping to the same gene.  We set the consistency score of each probe to the 
90th percentile of computed Spearman correlation coefficients across its neighbors.  Before 
measuring correlation, probe readouts were quantile normalized to abstract away correlation 
among probes generated by inter-sample systematic bias.  Statistical significance was estimated 
on a gene-per-gene basis using a null distribution generated by computing the correlation 
between probes mapping to the gene and 1,000 probes selected uniformly at random.  Probes 
with consistency score corresponding to p>0.01 were eliminated (Fig. 1A). 
 
Probe clusters.  Neighboring probes that map to isoforms that are differentiated by alternative 
splicing, RNA editing, or non-representative hybridization can produce readouts of different 
molecular species leading to poor quantitative intensity evaluation for the probe-set.  To account 



for RNA isoforms, we performed a non-supervised, single-linkage hierarchical clustering of the 
probes using Spearman correlation coefficient (rho) as a distance measure.  First, clusters were 
formed by iteratively breaking dendrogram edges that were significantly longer than the 
remainder of the edges in each level according to a one-tail t-test threshold of p < 10-10 (Fig. 1B 
and C).  Then, we iteratively merged cluster pairs with distance significance greater than 0.001, 
were distance between clusters was defined as the distance between the closest elements across 
clusters, and significance was estimated using a null distribution of 1,000,000 distances between 
randomly selected probe pairs.  For illustration, Figure 1D depicts the two probe sets identified 
for MAX across three of its known isoforms. 
 
Probe-set reliability.  Low information probe sets, composed of few or dependent probes were 
eliminated to reduce the false discovery rate (FDR).  Overlapping probes account for 87.2% of 
the U95av2 remapped probes and 66.1% of the U133plus2 remapped probes, and they are 
affected by systematic bias resulting from common technical artifacts and cross-hybridization.  
These biases artificially improve pairwise correlations across expression vectors and can be 
estimated by conditioning on probe-overlap size.  Figure 1E pictorially demonstrates that 
pairwise Spearman correlations between probes can be described as an exponential function of 
their overlap size; we found this significant behavior to hold true across platforms and 
experiments.  To assign consistency scores for probe sets, we derived a score for computing the 
contribution of each probe according to their overlap with their upstream neighbor.  Each probe 
contributed at most one point to the total score, and the contribution of a probe that overlaps 
another upstream probe was set according to s(x):  
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where x is the shortest distance between probe starting positions across isoforms (position shift in 
Figure 1E); a, b and c are estimated by fitting f (x) to pairwise Spearman correlations for 1 ≤ x ≤ 
24; and k = E(f(x)) for 25 ≤ x ≤ 50.  We estimated the probe-set FDR for each consistency score 
using permutation testing, where each CleanProbeSets probe set constructed after permuting 
experiment labels for each probe was considered a false positive detection.  For all experiments 
reported in this study, we set the minimum probe-set consistency score to s(x)≥3. 
 

2.4 Differential expression 
We used a non-parametric U-test to identify down-regulated genes in centroblasts B cells relative 
to naïve B cells.  Comparisons were made using expression profiles from five biological 
replicates in each cell type.  To identify a representative set of down-regulated genes per 
platform and annotation method, we used a z-value cutoff of 2.33 (p<0.01) for calling differential 
expression together with a 1.5 fold change requirement. The fold change requirement was used 
in order to correct for the high expected false discovery rate of this non-parametric 5×5 test 
across thousands of probe sets (see Figure 5).  The 1.5-fold increase from naïve to centroblasts B 
cells was based on the average intensities of the probe sets after MAS5 normalization and log2 
transformation.  Analysis accuracy was measured using permutation testing repeated 20 times 
per annotation and platform, where the experimental source labels were shuffled for each probe 
set. 
 



3 Results and discussion 
Due to poor mapping to RefSeq genes, poor reliability or low gene expression across 
experiments, CleanProbeSets discards most of the individual probe measurements in each 
Affymetrix gene chip.  It retains probe-set representations for approximately half of the genes 
that were originally probed on the array.  The loss of data is offset by dramatic improvements in 
measurement accuracy for the remaining probed genes.  Our experiments suggest that the vast 
majority of data discarded is at best uninformative for downstream analysis, and it may be 
misleading and reduce its accuracy. 
  

3.1 Probe sets for U95Av2 and U133plus2 
CleanProbeSets rejects probes due to poor matches to RefSeq transcripts (see Section 2.2) and 
poor fit to a consistent probe set (see Section 2.3).  Table 1 describes the total number of probes 
available, the number of discarded probes, and the number of probe sets produced by 
CleanProbeSets when measuring B-cell expression using U95Av2 and U133plus2.  Poor gene 
matching, due to no- or multiple-gene homology, resulted in a loss of 23% and 47% of the 
probes for U95Av2 and U133plus2 (Remap in Table 1).  Probe and probe-set reliability analysis 
further discarded 48% and 67% of the RefSeq–mapped probes in U95Av2 and U133plus2.  Of 
the probes discarded due to reliability issues, 55% and 58% were originally mapped to genes 
containing no consistent probes on U95Av2 and U133plus2 platforms.  Over 40% of the 
discarded probes were mapped to isoforms with consistent probe sets, suggesting that individual 
probes mapped to expressed genes can be inconsistent due to technical bias (Figure 2).  
CleanProbeSets eliminated most of the original probes, and represented approximately half of 
the probed genes by at least one probe set (see Table 1). 
 
The relationship between expression intensity and probe-set reliability depicted in Figure 1G 
suggests that while low-intensity probe sets are significantly more likely to be eliminated, low 
intensity on its own is not a sufficient requirement for rejection: many high-intensity probe sets 
get discarded and low intensity probe sets kept.  In addition, we note that imperfectly matching 
probes (with a single RefSeq homology mismatch) were rejected at a significantly higher rate 
than perfectly matching probes, and they account for a small portion of the consistent probes.  To 
estimate the sample-size effect on CleanProbeSets analysis we randomly selected subsets from 
the 152 U95Av2 and 200 U133plus2 microarray experiments in B cells, and estimated the FDR 
when constructing probe sets with CleanProbeSets; we selected twenty samples per sample size.  
Results, given in Figure 3 suggest that CleanProbeSets is not effective for analyzing data derived 
from fewer than 20 microarray experiments.  FDR and probe-set sizes showed no significant 
change for expression sets consisting of 40 or more microarray experiments, suggesting that full 
statistical power is obtained at this size. 
 
Probe features such as G spots have been shown to disproportionately bias expression 
measurements (Upton, Langdon et al. 2008).  We used DME and motifclass (Smith, Sumazin et 
al. 2007) to identify patterns that are enriched in sequences of discarded probes relative to 
sequences of consistent probes.  To ensure that discarded probes were truly individually 
inconsistent and were not discarded due to absent genes, we restricted the study to consistent 
probe-sets corresponding to genes that had less than 20% probe rejection rates.  The most 
enriched motifs identified were CGGGGG and GGG[G|A][G|C]; both motifs were significantly 
(p<0.001) enriched according to permutation testing, and CGGGGG had sites in 46% of the 



inconsistent probes and 20% of the consistent probes.  This result suggests that patterns such as 
G spots are strongly correlated with probe bias, but may not sufficient criteria for probe 
selection.  Twenty percent of the consistent probes included a CGGGGG substring but still 
showed significant correlation to neighboring G-spot-free probes. 
 

3.2 Agreement across technical replicate experiments 
Repeatability of experimental results is one the basic requirements of any technology used for 
research and product development.  We show that experimental repeatability is highly influenced 
by probe-set annotation quality.  We measured Spearman correlation between replicate 
experiments from GeneAtlasV2 for 30 human tissue samples using Affymetrix, AffyProbeMiner, 
and CleanProbeSets probe-set annotation.  Correlation coefficient distributions are given in 
Figure 4 and demonstrate that experimental replicates are in better agreement (significantly and 
dramatically) when using CleanProbeSets probe-set annotation.  The CleanProbeSets advantage 
over AffyProbeMiner is almost entirely due to its ability to eliminate inconsistent probes and 
construct clean probe sets, and it is not due to an improved probe-sequence mapping to up-to-
date genomes.  To demonstrate this, we included results taken at an intermediary step of the 
CleanProbeSets algorithm (Remap-only in Figure 4), where all RefSeq-mapped probes were 
used for probe-set construction.  These results show that in the absence of CleanProbeSets 
reliability testing, there is no significant difference (at p<0.05) between our probe-sequence 
mapping annotation and AffyProbeMiner annotation.  In addition, to demonstrate that probe-set 
level pruning does not bridge the performance gap between CleanProbeSets and the other 
annotations, we selected the 1,000 probe sets with highest coefficient of variation (CV) across 
samples for each annotation and repeated the comparison; CV-based pruning is commonly used 
to remove poorly-informative probe sets from microarray expression experiments (MAQC 
2006).  Our results suggest that CleanProbeSets probe sets are significantly more consistent 
across experiments and that the benefit of its probe-level selection and pruning may not be 
achieved by probe-set level pruning. 
 

3.3 Cross-platform agreement on differentially expressed genes 
Differentially-expressed genes, identified using multiple platforms, are routinely used to quantify 
cross-platform consistency (Dai, Wang et al. 2005; MAQC 2006).  Genes with down-regulated 
expression during B-cell maturation from naïve to centroblasts B cells may contribute to mature 
B-cell germinal-center formation.  We identified these genes by searching for differentially 
down-regulated genes in centroblasts B-cell gene-expression profiles relative to naïve B-cell 
gene-expression profiles.   Basso et al. (2005) used Affymetrix geneChip U95A and U95Av2 
microarrays to obtain gene expression profiles from five biological replicates of naïve and of 
centroblasts B cells; the same samples were later analyzed using U133plus2.  We measured the 
consistency of differentially expressed gene sets across platforms, and the FDR of down-
regulation calls in each platform under Affymetrix, AffyProbeMiner, and CleanProbeSets probe-
set annotation.  Figure 5 shows that U133plus2-based analysis was consistently found to be more 
accurate than U95A-based analysis, and that CleanProbeSets produces significantly and 
dramatically more accurate intra- and inter-platform results.  To identify centroblasts down-
regulated genes we used a z-value cutoff of 2.33 (p<0.01) for calling down-regulation together 
with an added 1.5 fold change requirement (see Secion 2.4).  Permutation testing estimates for 
the FDR in the U133plus2 analysis were 10.7%, 5.4% and 3.2% for Affymetrix, 
AffyProbeMiner, and CleanProbeSets probe-set annotation, respectively.  Focusing on genes 



probed by both U95A and U133plus2 platforms, we identified 859 and 1234 down-regulated 
genes in centroblasts by using Affymetrix annotations; 742 and 989 down-regulated genes by 
using AffyProbeMiner; and 677 and 801 down-regulated genes when using CleanProbeSets.  For 
Affymetrix annotation, 1478 genes were called down-regulated by at least one of the platforms 
and 615 (41.6%) genes were called down-regulated in both platforms; this ratio improved to 550 
of 1181 (46.6%) for AffyProbeMiner, and to 562 of 919 (61.2%) for CleanProbeSets.  Note that 
results are independent of the number of differentially expressed genes identified in each method 
and each platform; the U133plus2 platform included more probes and more probe sets and was 
more accurate, while the most accurate results were produced using CleanProbeSets, which 
defined the fewest probe sets. 
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Table 1: Number of probes, probe-sets and genes represented in two popular Affymetrix 
geneChip microarrays.  We report the number of probes, probe-sets and unique entrezIDs for the 
U95av2 and U133plus2 platforms according to Affymetrix, AffyProbeMiner (APM), Remap, and 
CleanProbeSets (CPS) annotation.  Remap is the first stage of CPS and includes mapping of 
probe sequences to RefSeq transcripts but no pruning. 

  

 



Figure 1: CleanProbeSets algorithm on 152 B-cell samples profiled on U95Av2 chips 

 

(A) Probe consistency scores for four genes (distinguished by color) and their corresponding null 
density distributions. Dots represent probes and are plotted according to consistency scores 
(horizontal axis) and distances from the transcript 3' end (vertical axis).  Solid lines depict null 
density distributions and dotted vertical lines are drawn at their 99 percentile.  Consistent probes 
are to the right of their respective dotted lines.  (B) Unsupervised hierarchical clustering of 
probes mapping to MAX (all isoforms); naturally occurring probe clusters are highlight in red.  
(C) Relative distance between each consecutive cluster in the dendrogram in panel B; the right-
most point represents the distance between highlighted clusters in panel B.  (D) Three known 
isoforms for MAX and the mapping positions of probes belonging to the two probe-sets 
generated by CleanProbeSets for MAX; probes from probe set 4149.2 are mapped to the splice-
variant 5th exon.  (E) The mean of spearman correlations between overlapping and neighboring 
probes depends on the distance between them, and it is closely modeled by an exponential 
function.  (F) FDR as a function of the reliability score, as estimated by permutation testing; no 
probe-set with reliability score higher than 4 was identified in permuted sets.  (G) Probe-set 
reliability scores are correlated to their MAS5-assigned intensity, as measured before pruning.  
However, the intersection between distributions for the 4,702 consistent probe sets (red), 3,708 
inconsistent probe sets (blue), and all probe sets (black line) suggests that probe-set intensity is 
not a perfect predictor for probe set reliability. 
 
  



Figure 2: Inconsistent probe distribution across probe sets 
 
 

 
 
Frequency of probe sets with variable proportion of inconsistent probes as identified by 
CleanProbeSets for 50 B-cell samples hybridized to (A) U95Av2 and (B) U133plus2 gene chips.  
The majority of inconsistent (discarded) probes were mapped to genes with no consistent probes 
(blue), but 20% and 10% of inconsistent probes in U95Av2 and U133plus2 (red) were mapped to 
probe sets with over 90% probe consistency rates. 
 
 
 
Figure 3: CleanProbeSets estimated false discovery rates  
 

 
 
(A) Number of detected probe sets for variable-size randomly-selected subsets of the 152 and 
200 microarray expression experiments on the U95av2 and U133plus2 platforms.  (B) False 
discovery rate associated with subsets from (A) were estimated by permutation testing. 
   



 
Figure 4: Consistency across technical replicate experiments 
 

 
 
Density distributions for the spearman correlation coefficient across technical replicates 
considering (A) all the probe sets generated by each method (size in parenthesis), and (B) only 
the 1,000 probe sets with the highest sample variation for each method.  CleanProbeSets probe 
sets show dramatically better agreement across technical replicates even after pruning to remove 
low variability probe sets.  Remap-only probe sets were statistically indistinguishable from 
AffyProbeMiner probe sets; both sets showed significantly better agreement across technical 
replicates than Affymetrix probe sets in panel A, but the three were statistically indistinguishable 
after pruning out low sample variation probe sets (panel B).



Figure 5: cross-platform consistency for differential expression analysis 
 

 
 
Comparison of cross-platform consistency (U95A vs. U133P2), and estimated individual 
accuracy of differential expression calls using CleanProbeSets [red], AffyProbeMiner [blue] and 
Affymetrix [black] annotation.  Comparisons are made as a function of the z-value threshold 
used for identifying differentially down-regulated genes (x-axis).  Cross-platform consistency 
(left) was measured as the proportion of genes that are called down regulated by both platforms 
to genes that are probed by both platforms and are called down regulated by at least one of the 
platforms.  Accuracy of individual experiments (right) was measured using FDR estimates from 
permutation testing, where all probe sets scoring above threshold in the original data are called 
true positives and all probe sets identified in permutated data are called false positives. 
 


